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x1. Introduction

In the General relativity, a metric is used as mathematical expression

of the gravity. However, the metric does not resemble gravity. It will be

a local inertia coordinate to be good for expression of the gravity. We

deåne’point-coordinate-systems’ as a mathematical expression of the

local inertia coordinate. The way of a new gravity theory opened out

hereby. On the other hand, we deåne’light-cone’. A new mathemat-

ical model of space-time is made by this ’point-coordinate-systems’

and ’light-cone’. An interesting vector Ai appears when we deåne a

light-ray on this model. This Ai will behave like a vector potential of

electromagnetism.

x2. Description of Necessary Mathematics.

In this chapter, because we generally deal with a N -space , the sub-

scripts i; j; k; l;m; n; ::: are assumed to take the values 1; 2; 3; :::; N . We

easily write (xi) the coordinates (x1; x2; :::; xN ) . A symbol éij and a

symbol éij are the Kronecker0s delta .

2.1 Tensors

In this paper, the deånition of the tensor followed the reference[1].

We easily introduce it here.

The deånition of a tensor of type (m;n) is the following. We describe

it by using the example. Let us consider a set of real functions T ijklm
in the N -space consisted of N5 elements. It is said that the set T ijklm
is a tensor of type (2,3), if they transform on change of coordinates

(xi)! (ñxi) , according to the equations

ñT opqrs =
@ñxo

@xi
@ñxp

@xj
@xk

@ñxq
@xl

@ñxr
@xm

@ñxs
T ijklm: (2:1:1)

Here, ñT opqrs is deåned on coordinates (ñxi) .
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A covariant vector Ai is a tensor of type (0,1) because it transform

as follows.

ñAi =
@xj

@ñxi
Aj : (2:1:2)

A contravariant vector Ai is a tensor of type (1,0) because it transform

as follows.

ñAi =
@ñxi

@xj
Aj : (2:1:3)

2.2 Point-coordinate-systems and coeécients of connection.

Let us consider a point P in the N -space and a neighborhood UP of

P . In UP , we give a coordinate (zi) whose origin is P . The (zi) is called

a point-coordinate of P in this paper. If the point-coordinate (zi) is

given to each point in the N -space, they are called a point-coordinate-

system in this paper. By using the point-coordinate-system (zi) , we

deåne the expression zÄijk as follows.

zÄijk(P ) =
@xi

@zl
@2zl

@xj@xk
: (2:2:1)

Here, this partial derivatives are evaluated at the origin of (zi) of P . In

this paper, zÄijk are called the coeécients of connection deåned by the

point-coordinate-system (zi) .

2.3 Covariant derivatives

In this section , we deåne the covariant derivative of tensor by us-

ing the point-coordinate-system (zi) . These methods are extremely

eãective for our purpose.

Let us consider a covariant vector Ei and ñEi deåned by the equations

ñEi =
@xj

@zi
Ej : (2:3:1)

It is eazy to prove the following.

@zk

@xi
@zl

@xj
@ ñEk
@zl

=
@Ei
@xj

Ä zÄlijEl: (2:3:2)

Here, @ ñEk=@zl are evaluated at the origin of (zi) . The expression
zrjEi is deåned by the left-hand side or the right-hand side of (2.3.2).

We can prove that zrjEi is a tensor of type (0,2). zrjEi is called the

covariant derivative of Ei concerning zÄijk in this paper.
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Let us consider a contravariant vector F i and ñF i deåned by the

equations

ñF i =
@zi

@xj
F j : (2:3:3)

It is eazy to prove the following.

@zk

@xj
@xi

@zl
@ ñF l

@zk
=
@F i

@xj
+ zÄijlF

l: (2:3:4)

Here, @ ñF l=@zk are evaluated at the origin of (zi) . The expression zrjF i
is deåned by the left-hand side or the right-hand side of (2.3.4). We can

prove that zrjF i is a tensor of type (1,1). zrjF i is called the covariant

derivative of F i concerning zÄijk in this paper.

Similarly in case of other tensors, we can deåne its covariant deriva-

tives. Let f be a scalar. Let gij be a tensor of type (0,2). Then, we

have the deånitions as follows.

zrif = @if: (2:3:5)

zrkgij = @kgij Ä zÄpkigpj Ä zÄpkjgip: (2:3:6)

We can prove that zrif is a tensor of type (0,1) and zrkgij is a tensor

of type (0,3).

Let Ai and Bi be two tensor of type (0,1). Let Eij be a tensor of

type (0,2). Let gij be a tensor of type (2,0). Then, we can prove the

following.
zrk(Ai +Bi) = zrkAi + zrkBi:

zrk(gijvjvj) = (zrkgij)vivj + gij(zrkvi)vj + gijvi(zrkvj):
zrk(fEij) = (zrkf)Eij + f(zrkEij):
zrk(gijAj) = (zrkgij)Aj + gij(zrkAj):

These equations can be extended to general laws.

2.4 The equation z[xi=t] = 0 .

Let us suppose that the coeécients of connection zÄijk and a curve

xi(t) are given in the N -space. We deåne the expression z[xi=t] as

follows.

z[xi=t] =
dvi

dt
+ zÄijkv

jvk ; vi =
dxi

dt
: (2:4:1)
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The z[xi=t] are vectors on the curve xi(t).

Let xi(t) be the solution of z[xi=t] = 0 . If we change the parameter

from t to s , then xi(s) generally is not the solution of z [xi=s] = 0 .

Therefore, t is the special parameter of this curve. The t is called a

orthonormal parameter of this curve in this paper.

Let t be the orthonormal parameter. Let c be an arbitrary constant.

Then ct is also the orthonormal parameter. In addition, if s is an arbi-

trary orthonormal parameter, then we have s = ñct as follows. Here, ñc is

a certain constant. By using (3) of section 2.5,

z[xi=s] =
ê dt
ds

ë2
z [xi=t] +

d2t

ds2
vi = 0 ; vi =

dxi

dt
: (2:4:2)

By (2.4.2), we obtain d2t=ds2 = 0 ,i.e., s = ñct .

In (2,4,1), the vector vi is deåned only on the curve, however we

virtually can extend vi to neighborhood of the curve. Then we can

write z[xi=t] as follows.

z[xi=t] =
ê @vi
@xk

+ zÄijkv
j
ë
vk = (zrkvi)vk: (2:4:3)

Lemma 2.4.1

Suppose that the coeécient of connection zÄijk and the metric tensor

gij are given in theN -space. Let the curve xi(t) be a solution of z [xi=t] =

0 . Let a parameter s be the arc-length measured with gij along this

curve . Then, we obtain the following.

d2s

dt2
Ä 1

2
(zrkgij)V iV jV k

ê ds
dt

ë2
= 0 ; V i =

dxi

ds
: (1)

d2t

ds2
+

1

2
(zrkgij)V iV jV k

dt

ds
= 0: (2)

（proof） By (3) of section 2.5,

z[xi=t] =
ê ds
dt

ë2
z[xi=s] +

d2s

dt2
V i = 0:

Multiplication by gijV j gives

ê ds
dt

ë2
gij

z[xi=s]V j +
d2s

dt2
= 0: (3)

By gijV iV j = 1 , we have

0 = zrk(gijV iV j)V k = (zrkgij)V iV jV k + 2gij(
zrkV i)V kV j :
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Because (zrkV i)V k = z[xi=s] , we have

(zrkgij)V iV jV k = Ä2gij z[xi=s]V j : (4)

By setting (4) to (3), we obtain the equation (1). Lastly, by using (1)

of section 2.5 to (1), we obtain the equation (2). 2

2.5 Formulae.

In this section, we give the formulae using in this paper. We can

prove these formulae by the simple calculation.

Suppose that t is some function of s , then we have

d2s

dt2
= Ä

ê ds
dt

ë3 d2t
ds2

: (1)

Suppose that (xi); (yi) are two coordinates in the N -space and xi(t) is

a curve in the N -space , then we have

d2yi

dt2
=
@yi

@xn

ê d2xn
dt2

+
@xn

@yl
@2yl

@xj@xk
dxj

dt

dxk

dt

ë
: (2)

Suppose that a coeécient of connection aÄijk and a curve xi(t) are

given in the N -space. Let s be an arbitrary parameter of this curve.

Then we have

a[xi=t] =
ê ds
dt

ë2
a[xi=s] +

d2s

dt2
dxi

ds
: (3)

x3. Mathematical Model of Space-Time.

In the årst, let us suppose that our space-time consist of four dimen-

sions. Suppose that the subscripts i; j; k; l;m; n; :::; z take the values

1; 2; 3; 4 and the subscripts ã;å; :::; ! take the values 0; 1; 2; 3; 4 .

3.1 Point-coordinate-systems expressing inertia and equations

of free-fall.

Let us construct the space-time in the 4-space. First, we consider

a free-fall of the material-point. Here, suppose that the curve of free-

fall is irrelevant to its mass. At each point of the space-time, we can

image the inertial frame of reference. Then, let us suppose that a certain

point-coordinate-system (yi) expresses the inertial frame of reference.
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Let a curve xi(ú) be the free-fall of the material-point. Here, úis the

proper-time. Let P be some point on this curve. If we see this curve in

the point-coordinate (yi) of P , then we will have

d2yi

dú2
= 0:

By using (2) of section 2.5, we have

d2yi

dú2
=
@yi

@xn

ê d2xn
dú2

+
@xn

@yl
@2yl

@xj@xk
dxj

dú

dxk

dú

ë
= 0: (3:1:1)

The equation (3.1.1) is identical to

y[xi=ú] = 0: (3:1:2)

The (3.1.2) is the equation of the free-fall and the proper-time ú is the

orthonormal parameter of this curve.

3.2 Light-cones and equations of light-ray.

We deåne the matrix Bij as follows.

B11 = B22 = B33 = Ä1 ; B44 = 1 ; Bij = 0 if i 6= j: (3:2:1)

Let P be an arbitrary point in the 4-space. Suppose that the light-cone

Gij(P ) of P has some following features.

Gij(P ) = Gji(P ): (3:2:2)

If a vector vi grown from P is the direction of the light-ray starting from

P , then

Gij(P )v
ivj = 0: (3:2:3)

The light-cone Gij is the tensor of type (0,2). Let ï be an arbitrary

scalar. If Gij is the light-cone , then ïGij is also the light-cone of

the same light-wave. Additionally, a non-singular matrix Sij exists as

follows.

Ski S
l
jGkl = Bij : (3:2:4)

Already, we gave the equation of free-fall of the material-point. Sim-

ilarly, the equation of the light-ray xi(ú) is also given by (3.1.2). On the
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other hand, the light-ray has to meet the equation (3.2.3) at all points.

Therefore, we have

0 =
d

dú
(Gijv

ivj) = yrk(Gijvivj)vk

= (yrkGij)vivjvk + 2Gij(
yrkvi)vkvj ; vi =

dxi

dú
: (3:2:5)

By setting

(yrkvi)vk = y[xi=ú] = 0;

we obtain

(yrkGij)vivjvk = 0: (3:2:6)

The equation (3.2.6) has to apply to all the light-rays starting from

P . Therefore, the polynomial (yrkGij)XiXjXk can just be divided by

the polynomial GijXiXj , because GijX iXj is irreducible by Lemma

3.2.1 (! reference[2]) . Therefore 2Ai exists as follows.

yrkGijXiXjXk = (2AiX
i)(GjkX

jXk): (3:2:7)

Now, we pay attention to the Ai . Let us change the light-cone from

Gij to ñGij = ïGij . By the equation

yrk ñGij = (@kï)Gij +ï
yrkGij ; (3:2:8)

we have

yrk ñGijX iXjXk = (@kï)GijX
iXjXk +ï yrkGijXiXjXk: (3:2:9)

By setting (3.2.7) to (3.2.9), we have

yrk ñGijXiXjXk = f(@kï)Gij + 2ïAkGijgXiXjXk

= 2
ê 1

2ï
@kï+ Ak

ë
ñGijX

iXjXk: (3:2:10)

By the (3.2.10), we obtain

ñAk = Ak + @k log
p
ï: (3:2:11)

Here, ñAi is corresponding to ñGij . By the equation (3.2.11), it seems

that Ai is the vector potential of electromagnetism.
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Lemma 3.2.1

If Gij is a light-cone, the polynomial GijXiXj is irreducible.

(proof) We will lead a contradiction from the supposition which

GijXiXj is reducible. By a certain non-singular matrix Sji , we have

Bij = S
k
i S

l
jGkl: (1)

If GijXiXj is reducible, ai and bi exist as follows.

GijX
iXj = aiX

ibjX
j : (2)

Therefore we have

Gij =
1

2
(aibj + ajbi): (3)

By using (1) and (3), we have

Bij =
1

2
Ski S

l
j(akbl + albk) =

1

2
(ñaiñbj + ñajñbi): (4)

Here,

ñai = S
p
i ap ;

ñbi = S
p
i bp: (5)

In the special case of (4), we have

Ä1 = B11 = ña1ñb1 ; Ä1 = B22 = ña2ñb2: (6)

Therefore we have

ñb1 = Ä
1

ña1
; ñb2 = Ä

1

ña2
: (7)

Similarly by using (4), we have

0 = B12 =
1

2
(ña1ñb2 + ña2ñb1): (8)

By setting (7) to (8), we have

0 = Ä1

2

êña1
ña2

+
ña2
ña1

ë
: (9)

Multiplication by ña1ña2 to (9), we have

0 = ña1ña1 + ña2ña2: (10)

We obtain ña1 = ña2 = 0 by (10), however these results contradict (6). 2
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3.3 Space-time-potential and guage transformations.

Suppose that the light-cone Gij and the point-coordinate-system (yi)

expressing the inertial frame of reference are given in the 4-space. Let

xi(ú) be the curve of free-fall of the material-point. Let s be the arc-

length measured with the metric Gij along this curve, i.e.,

ds2 = Gijdx
idxj : (3:3:1)

According to Lemma 2.4.1

d2ú

ds2
+

1

2
(yrkGij)V iV jV k

dú

ds
= 0 ; V i =

dxi

ds
: (3:3:2)

On the other hand, according to the section 3.2 ,

(yrkGij)V iV jV k = 2(AkV
k)(GijV

iV j): (3:3:3)

Because GijV iV j = 1 , we obtain

d2ú

ds2
+ (AkV

k)
dú

ds
= 0: (3:3:4)

Let P;Q be two point on the xi(ú) . We consider

ê(P ) = Ä
Z P

Q

Aidx
i + C: (3:3:5)

Here, C is a constant. If ú is deåned as

dú= exp(ê)ds; (3:3:6)

then
d2ú

ds2
= exp(ê)

dê

ds
= Ä exp(ê)Ai

dxi

ds
: (3:3:7)

The equation (3.3.7) shows that úis the solution of the equation (3.3.4).

In this paper, êis called a space-time-potential.

By (3.3.6),

dú2 = exp(2ê)Gijdx
idxj : (3:3:8)

We hope to deal with exp(2ê)Gij as the metric , however ê is not a

function in the 4-space (xi) . Then, let us extend the space-time to a

5-space (xï) , and let us consider x0 = ê. We deåne a new metric gïñ

in the 5-space (xï) as follows.

gij = exp(2x0)Gij(x
1; :::; x4) ; gï0 = g0ï = 0: (3:3:9)



10

According to the deånitions, the curve xi(ú) is written xï(ú) in the

5-space (xï). Let dxï be a line element on this curve. Then,

dx0 = dê= ÄAidxi; (3:3:10)

i.e.,

dx0 + Aidx
i = 0: (3:3:11)

If we deåne A0 = 1 as a åfth element of Ai , then we can write (3.3.11)

as follows.

Aïdx
ï = 0: (3:3:12)

In this paper, transformations appeared by Gij ! ïGij are called a

gauge transformation. As an example, we have

Ai ! Ai + @ië ; ë= log
p
ï: (3:3:13)

How does the space-time-potential of the curve transform by the gauge

transformation ? Let ñê be a space-time-potential of the new gauge.

According to the deånitions,

dñê= Ä(Ai + @ië)dxi ; ñê(P ) = Ä
Z P

Q

dñê+ C: (3:3:14)

Here, Q and C are not åxed. Then, let us suppose that the proper-time

does not vary by the gauge transformation. That is,

dú2 = exp(2ê)Gijdx
idxj = exp(2ñê)ïGijdx

idxj

= exp(2ñê+ 2ë)Gijdx
idxj : (3:3:15)

Therefore

ê(P ) = ñê(P ) +ë(P ): (3:3:16)

Now, we consider the transformation of coordinates as follows.

ñx0 = x0 Äë(x1; :::; x4) ; ñxi = xi: (3:3:17)

By (3.3.17), Aï transform as follows.

ñA0 =
@x0

@ñx0
A0 +

@xj

@ñx0
Aj = 1 +éj0Aj = 1; (3:3:18)

ñAi =
@x0

@ñxi
A0 +

@xj

@ñxi
Aj = @ië+é

j
iAj = Ai + @ië: (3:3:19)
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Generally by using (3.3.17), a symmetric tensor cïñ of type (0,2)

transform as follows.

ñcij = cij + @iëc0j + @jëc0i + @ië@jëc00 ;

ñc0j = c0j + @jëc00 ; ñc00 = c00: (3:3:20)

In the case of gïñ , we have

ñgij = gij ; ñgï0 = ñg0ï = 0: (3:3:21)

3.4 Metrics of 5-space.

The metric gïó deåned in section 3.3 has not a inverse matrix. If gïó

has a inverse matrix gïó then gïógóñ = éïñ . In the case of ï= ñ= 0 ,

0 = g0ógó0 = é
0
0 = 1:

This is a contradiction. Therefore, gïó is abnormal as the metric of the

5-space. Let us deåne a normal metric hïñ extended gïñ .

If a vector V ï grown from a point P is Aï(P )V ï = 0 then we wish

hïñ(P )V
ïV ñ = gïñ(P )V

ïV ñ: (3:4:1)

Therefore, the polynomial

(hïñÄ gïñ)XïXñ (3:4:2)

can just be divided by the polynomial AñXñ . We can ånd out aï as

follows.

(hïñÄ gïñ)XïXñ = (aïX
ï)(AñX

ñ): (3:4:3)

As a result, we obtain

hïñ = gïñ+
1

2
(aïAñ+ añAï): (3:4:4)

By (3.3.20), the metric hïñ transforms as follows.

ñhij = hij + @iëh0j + @jëh0i + @ië@jëh00; (3:4:5)

ñh0j = h0j + @jëh00 ; ñh00 = h00: (3:4:6)

In (3.4.6), we know that h0j=h00 has the same transformation as Ai .

Therefore, let us deåne the following.

h0j = h00Aj : (3:4:7)
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By using (3.4.4),

h00 = a0: (3:4:8)

By using (3.4.7) and (3.4.8),

h0j = a0Aj : (3:4:9)

On the other hand, by using (3.4.4)

h0j =
1

2
(a0Aj + aj): (3:4:10)

By using (3.4.10) and (3.4.9)

aj = a0Aj :

On the other hand a0 = a0A0 , therefore aï = a0Aï . As a result, we

obtain

hïñ = gïñ+ a0AïAñ: (3:4:11)

Lastly, we have to decide a0. Let us consider dxï = (dx0; 0; 0; 0; 0). The

length of dxï is

dl2 = hïñdx
ïdxñ = h00dx

0dx0 = a0dx
0dx0: (3:4:12)

We will expect dl2 = dx0dx0 , i.e., a0 = 1. We obtain

hïñ = exp(2x0)Gïñ+ AïAñ: (3:4:13)

If we disregard exp(2x0) , hïñ is same as the Kaluza0s metric .

The hïñ has a inverse matrix hïñ as follows.

hij = gij ; hi0 = h0i = ÄgijAj ;

h00 = gijAiAj + 1 ; gij = exp(Ä2x0)Gij :
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