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§1. Introduction

In the General relativity, a metric is used as mathematical expression
of the gravity. However, the metric does not resemble gravity. It will be
a local inertia coordinate to be good for expression of the gravity. We
define’ point-coordinate-systems’ as a mathematical expression of the
local inertia coordinate. The way of a new gravity theory opened out
hereby. On the other hand, we define ’ light-cone’ . A new mathemat-
ical model of space-time is made by this ~ point-coordinate-systems’
and ’ light-cone’ . An interesting vector Ai appears when we define a
light-ray on this model. This Ai will behave like a vector potential of

electromagnetism.

§2. Description of Necessary Mathematics.
In this chapter, because we generally deal with a N-space , the sub-
scripts ¢, J, k, I, m, n, ... are assumed to take the values 1,2,3,..., N . We

1 .2 N>.

easily write (z°) the coordinates (z!,22, ...,z A symbol 6% and a

symbol 6;; are the Kronecker's delta .

2.1 Tensors

In this paper, the definition of the tensor followed the reference|[1].
We easily introduce it here.

The definition of a tensor of type (m,n) is the following. We describe
it by using the example. Let us consider a set of real functions TZ{m
in the N-space consisted of N° elements. It is said that the set TZ{m
is a tensor of type (2,3), if they transform on change of coordinates
(z¥) — (2%) , according to the equations

° 0P Ox* Oxt Hr™ ..
Top, = %%%%%ngm. (2.1.1)

Here, T2, is defined on coordinates (z°) .



A covariant vector A; is a tensor of type (0,1) because it transform

as follows. D
_ )
OFt J ( )
A contravariant vector A? is a tensor of type (1,0) because it transform
as follows. o
_. Tzt .
A= _——A. (2.1.3
5 (2.1.3)

2.2 Point-coordinate-systems and coefficients of connection.
Let us consider a point P in the N-space and a neighborhood Up of
P. In Up, we give a coordinate (z*) whose origin is P. The (z?) is called
a point-coordinate of P in this paper. If the point-coordinate (2%) is
given to each point in the N-space, they are called a point-coordinate-
system in this paper. By using the point-coordinate-system (z*) , we

define the expression Zl“é- i as follows.

i oxt 922!
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Here, this partial derivatives are evaluated at the origin of (z%) of P. In
this paper, zfz-k are called the coefficients of connection defined by the

point-coordinate-system (2%) .

2.3 Covariant derivatives

In this section , we define the covariant derivative of tensor by us-
ing the point-coordinate-system (2*) . These methods are extremely
effective for our purpose.

Let us consider a covariant vector E; and E; defined by the equations

_ Oxd
B =2"F.
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It is eazy to prove the following.

(2.3.1)
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Here, OF} /02! are evaluated at the origin of (2*) . The expression
*V;E; is defined by the left-hand side or the right-hand side of (2.3.2).
We can prove that *V; E; is a tensor of type (0,2). *V,E; is called the

covariant derivative of E; concerning “I'y;, in this paper.



Let us consider a contravariant vector F* and F* defined by the
equations
I
F*=—F). (233
D (2.3.3)
It is eazy to prove the following.
0zF 0x* OFY  OF! ;
e = —+ TLFL (234
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Here, OF! /02* are evaluated at the origin of (z*) . The expression *V; F!
is defined by the left-hand side or the right-hand side of (2.3.4). We can
prove that *V; F'is a tensor of type (1,1). ZVjFi is called the covariant
derivative of F* concerning Zl“é-k in this paper.
Similarly in case of other tensors, we can define its covariant deriva-
tives. Let f be a scalar. Let g;; be a tensor of type (0,2). Then, we

have the definitions as follows.
Vif =0:f. (2.3.5)

*Vigij = Okgij — Thigpj — “Th;gip-  (2.3.6)
We can prove that *V; f is a tensor of type (0,1) and *Vyg,; is a tensor
of type (0,3).

Let A; and B; be two tensor of type (0,1). Let E;; be a tensor of
type (0,2). Let g% be a tensor of type (2,0). Then, we can prove the
following.

Vi(Ai+ Bi) = *ViAi + *ViB;.
V(90" 07) = (FVrgig)v'v? + gij Vi ! + gijo' (Vgo?).
Vi(fEy) = CVif)Eij + fCViE;j).

V(97 Aj) = (Vig")Aj + g7 (Vi A;j).

These equations can be extended to general laws.

2.4 The equation *[z!/t] =0 .
Let us suppose that the coefficients of connection ZF;k and a curve

z'(t) are given in the N-space. We define the expression *[z?/t] as

follows.

dz’

dt

dv’
dt

2t /1] = + Zl"j»kvjvk , vt = (2.4.1)



The #[z*/t] are vectors on the curve z*(t).

Let () be the solution of ?[x?/t] = 0 . If we change the parameter
from t to s , then z%(s) generally is not the solution of #[z*/s] = 0 .
Therefore, t is the special parameter of this curve. The ¢ is called a
orthonormal parameter of this curve in this paper.

Let ¢ be the orthonormal parameter. Let ¢ be an arbitrary constant.
Then ct is also the orthonormal parameter. In addition, if s is an arbi-
trary orthonormal parameter, then we have s = ¢t as follows. Here, € is
a certain constant. By using (3) of section 2.5,

dr?

, dt\2 . . d*t ;
Z[,.0 — Z[pt — ' = e . 2.4.2
[z*/s] (ds) [ /t] + o5vt =0, v'=—p (24.2)

By (2.4.2), we obtain d?t/ds?> =0 ,i.e., s=ct .
In (2,4,1), the vector v* is defined only on the curve, however we
virtually can extend v’ to neighborhood of the curve. Then we can

write *[2%/t] as follows.

[zt /] = (6“ + zrlkw) = (*Vyol)ok.  (2.4.3)

Lemma 2.4.1

Suppose that the coefficient of connection *I' %1 and the metric tensor
gij are given in the N-space. Let the curve z*(t) be a solution of *[z%/t] =
0 . Let a parameter s be the arc-length measured with g¢;; along this
curve . Then, we obtain the following.

d?2s 1 . dgt
— — = ik = i 1
gz~ 3V VYV (dt) 0, Vi="s

d2
ds2
(proof) By (3) of section 2.5,

1
+ = (vk U)V’vajz 0. (2)

2s
/) = (S0) *laiysl + Sovi =0,
Multiplication by gijVj gives
ds d%s
Z[ 0 ] —0.
(%) g 1o /slvi + T2 =0, (3)
By ¢;;VVJ =1, we have

0= *Vi(gi; V'VIVE = (Vrgis)V'VIVE 4 295 GV VOVFVI.



Because (*V,VH)VF = #[27/s] , we have
(*Vigij )VVIVE = —2g,; *[z*/s]VI.  (4)

By setting (4) to (3), we obtain the equation (1). Lastly, by using (1)
of section 2.5 to (1), we obtain the equation (2). O

2.5 Formulae.
In this section, we give the formulae using in this paper. We can
prove these formulae by the simple calculation.
Suppose that ¢ is some function of s , then we have
d’s _ (d8)3d2t )
dt2 —  \dt/) ds?’
Suppose that (z%), (y°) are two coordinates in the N-space and x’(t) is

a curve in the N-space , then we have

2y oy (de” oz 0%yt dad dmk) @)
dt2  Oxzn \ di2 oyt Oxidxk dt dt )’

Suppose that a coefficient of connection “I'%, and a curve z*(t) are
given in the N-space. Let s be an arbitrary parameter of this curve.

Then we have
2 i
i) = (50) et + S2U (3)
§3. Mathematical Model of Space-Time.
In the first, let us suppose that our space-time consist of four dimen-
sions. Suppose that the subscripts i, j, k,l,m,n, ...,z take the values
1,2, 3,4 and the subscripts a, 3, ..., w take the values 0,1,2,3,4 .

3.1 Point-coordinate-systems expressing inertia and equations
of free-fall.

Let us construct the space-time in the 4-space. First, we consider
a free-fall of the material-point. Here, suppose that the curve of free-
fall is irrelevant to its mass. At each point of the space-time, we can
image the inertial frame of reference. Then, let us suppose that a certain
point-coordinate-system (y*) expresses the inertial frame of reference.



Let a curve x*(7) be the free-fall of the material-point. Here, 7 is the
proper-time. Let P be some point on this curve. If we see this curve in
the point-coordinate (y*) of P , then we will have

d2yi

arz 0-

By using (2) of section 2.5, we have

d?y’ B 0y’ (d%”” dz™ 0%yt dad daF

- gr. 9y ATATN _ g (3.1.1
dr?2  Qxn \ dr2 Oyl Oxidxk dr dT) 0. (31.1)

The equation (3.1.1) is identical to
Y[z'/T] = 0. (3.1.2)

The (3.1.2) is the equation of the free-fall and the proper-time 7 is the

orthonormal parameter of this curve.

3.2 Light-cones and equations of light-ray.

We define the matrix B;; as follows.
Bii=Byy=Bsz3=—-1, Byu=1, Bj; =0 ifi#j (3.2.1)

Let P be an arbitrary point in the 4-space. Suppose that the light-cone
G;(P) of P has some following features.

Gi;(P) = G;i(P). (3.2.2)

If a vector v* grown from P is the direction of the light-ray starting from
P , then

Gii (P! =0. (3.2.3)

The light-cone G;; is the tensor of type (0,2). Let A be an arbitrary
scalar. If Gyj; is the light-cone , then AG;; is also the light-cone of
the same light-wave. Additionally, a non-singular matrix Sji- exists as
follows.

SFSIGr = Bij. (3.2.4)

Already, we gave the equation of free-fall of the material-point. Sim-
ilarly, the equation of the light-ray z?(7) is also given by (3.1.2). On the



other hand, the light-ray has to meet the equation (3.2.3) at all points.
Therefore, we have

d o o
0= —(Gijv’v’) = yvk(Gij’UzUJ)Uk

dr
. . , o drt
= (YViGyij) v vioP 4+ 2G4 (Y Vo' )okvd | ot = dx . (3.2.5)
T
By setting
(Vv k = Y[2i/7] =0,
we obtain

(YViGij)v'vivk = 0. (3.2.6)

The equation (3.2.6) has to apply to all the light-rays starting from
P. Therefore, the polynomial (YV1G;;)X*X7 X* can just be divided by
the polynomial G;; X*X7 | because G;;X*X7 is irreducible by Lemma

3.2.1 (— reference[2]) . Therefore 24; exists as follows.
UVEGy X XIXE = (24, XN (G X7 X*).  (3.2.7)

Now, we pay attention to the A; . Let us change the light-cone from
Gij to Gij = AG;; . By the equation

YViGij = (ON)Gij + A YViGij,  (3.2.8)

we have
UVEG, X XIXE = (O NG XTXIXP + A ¥VLGi XTXIXF. (3.2.9)
By setting (3.2.7) to (3.2.9), we have
UVEG X XTXE = {(0kN)Gij + 20 A3,Gi } X XTI XF

- 2(%8@ T Ak>éininXk. (3.2.10)

By the (3.2.10), we obtain
Ay = A+ O log VA (3.2.11)

Here, A; is corresponding to éi]‘ . By the equation (3.2.11), it seems
that A; is the vector potential of electromagnetism.



Lemma 3.2.1
If G;; is a light-cone, the polynomial G;; X*X7 is irreducible.
(proof) We will lead a contradiction from the supposition which

G XX is reducible. By a certain non-singular matrix Sg , we have
By =SFSiGr. (1)

If Gij X i X7 is reducible, a; and b; exist as follows.

Gy X' X7 = a; X0; X7, (2)
Therefore we have

1

Gij = 5(aibj + a;bi).  (3)

By using (1) and (3), we have
1 k ol 1 I B
B‘j = 551 Sj(akbl + (llbk) = §(aibj + ajbi). (4)

Here,
a; = Sfap s Bz = Sfbp (5)

In the special case of (4), we have
—1=Bu=aiby , —1= By =ashy. (6)

Therefore we have

Similarly by using (4), we have
1 - -
0= DBjs = 5((_11()2 + (_12()1). (8)
By setting (7) to (8), we have

0:—1(@+@). (9)

2 \as ay
Multiplication by aias to (9), we have
0 =aiay + asas. (10)

We obtain @1 = a2 = 0 by (10), however these results contradict (6). O



3.3 Space-time-potential and guage transformations.

Suppose that the light-cone G;; and the point-coordinate-system (y*)
expressing the inertial frame of reference are given in the 4-space. Let
z'(7) be the curve of free-fall of the material-point. Let s be the arc-

length measured with the metric G;; along this curve, i.e.,
ds® = Gyda'dr?.  (3.3.1)

According to Lemma 2.4.1

2r 1

dr . da?
k
a2 3

YVGi ) VVIV -0 V=

(3.3.2)
On the other hand, according to the section 3.2 ,

(UViGij)VVIVF = 2(A,VF) (G ViIVI).  (3.3.3)
Because G;;VV7 =1, we obtain

d?r

dr
E + (AkV’“)— =

. 3.4
=0, (334)

Let P, @ be two point on the 2°(7) . We consider

¢(P)=— /QP Aids' 4+ C. (3.3.5)

Here, C' is a constant. If 7 is defined as
dr = exp(¢)ds, (3.3.6)

then 2 i i
T "
— = - =— Ai—. 3.
I exp(¢) P exp(¢) I (3.3.7)
The equation (3.3.7) shows that 7 is the solution of the equation (3.3.4).
In this paper, ( is called a space-time-potential.
By (3.3.6),

dr? = exp(2¢)Gy;dzida’. (3.3.8)

We hope to deal with exp(2()G;; as the metric , however ( is not a
function in the 4-space (z¢) . Then, let us extend the space-time to a
5-space (1) , and let us consider 2° = ¢ . We define a new metric I

in the 5-space (z*) as follows.

Gij = exp(2a:0)Gij(x1, s z) ) g0 =gox =0. (3.3.9)
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According to the definitions, the curve 2*(7) is written 2*(7) in the
5-space (z*). Let dz be a line element on this curve. Then,

da® = d¢ = —Agdz®,  (3.3.10)
ie.,
dz® + Aydx' = 0. (3.3.11)

If we define Ag = 1 as a fifth element of A; , then we can write (3.3.11)
as follows.
Aydz* =0. (3.3.12)

In this paper, transformations appeared by G;; — AG;; are called a

gauge transformation. As an example, we have
A — A +0im , n=logVX (3.3.13)

How does the space-time-potential of the curve transform by the gauge
transformation ? Let ¢ be a space-time-potential of the new gauge.

According to the definitions,
d¢ = —(A;i + Oim)dz* , ((P) = —/ dC+C. (3.3.14)
Q

Here, @ and C are not fixed. Then, let us suppose that the proper-time
does not vary by the gauge transformation. That is,

dr? = exp(20)Gijdr'ds’ = exp(20)\Gyjda’dz?

= exp(2€ + 2n)Gijdx'da?.  (3.3.15)

Therefore

C(P)={(P)+n(P). (3.3.16)
Now, we consider the transformation of coordinates as follows.
=0

0 =20 —p(zt, .2t , T =2' (3.3.17)

By (3.3.17), A transform as follows.

_ ox° oI j
Ay = —83_:0140 + ﬁAJ‘ =1+68A4;=1, (3.3.18)
_ o0 oI .
A, = —8; Ao + _a:i Aj =0+ 6]A; = Aj 4+ 0m.  (3.3.19)

0z
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Generally by using (3.3.17), a symmetric tensor cy, of type (0,2)

transform as follows.
Cij = ¢ij + Oinco; + djnco; + dindjncoo
Coj = coj +0jncoo , Coo = coo- (3.3.20)
In the case of gx, , we have

Gij = 9ij > Gro=gox=0. (3.3.21)

3.4 Metrics of 5-space.
The metric gy, defined in section 3.3 has not a inverse matrix. If gy,

has a inverse matrix ¢*” then g)"’gw = (52‘ . In the case of A\=p =0,
0= .Goyguo = 68 =1

This is a contradiction. Therefore, gy, is abnormal as the metric of the
9-space. Let us define a normal metric hy, extended gy, -
If a vector V* grown from a point P is Ay(P)V* = 0 then we wish

hap(PYVAVE = g\ (PYVAVE. (3.4.1)
Therefore, the polynomial
(hap — gau) X X* (3.4.2)

can just be divided by the polynomial A, X* . We can find out ay as
follows.
(hap — ) XA XF = (axXM)(A,XH).  (3.4.3)

As a result, we obtain
1
R = 9a + 5(arAy +aAy). (34.4)

By (3.3.20), the metric hy, transforms as follows.

hij = hij + dinhoj + djnhoi + 0mdjnhoo,  (3.4.5)
EOJ = hOj + 8j77h00 s 7100 = hgg- (3.4.6)

In (3.4.6), we know that hg;/hoo has the same transformation as A; .

Therefore, let us define the following.

hoj = hooAj. (347)
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By using (3.4.4),
hOO = agp-. (348)

By using (3.4.7) and (3.4.8),
hoj = apd;. (3.4.9)
On the other hand, by using (3.4.4)
hoj = é(aoAj +aj). (3.4.10)
By using (3.4.10) and (3.4.9)
a; = apA;.

On the other hand ag = CI,QA() s therefore ay = aOA)‘ . As a result, we
obtain
Py = gau + a0 AxAy.  (3.4.11)

Lastly, we have to decide ag. Let us consider dz* = (dz°,0,0,0,0). The
length of dz? is

di? = hyudz dzt = hoodz®dz® = agdz®dz®.  (3.4.12)
We will expect dI? = dz%dz? , i.e., ag = 1. We obtain
hy, = exp(22°)Gy, + ArA,.  (3.4.13)

If we disregard exp(2z°) , hy, is same as the Kaluza's metric .

The hy, has a inverse matrix hM as follows.
i = gid | pio — poi — _gijAj ,

KO = G A +1, g7 = exp(—2)G .
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