# アイコイル超発電

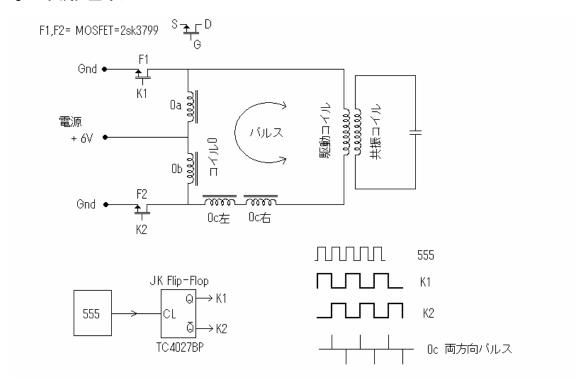
# 渡辺 満 (静岡県)

## § 0 はじめに

色々やっているうちに、僕の装置は、いつの間にか、 テスラ・コイルの模型と、呼べるようなものになっていた。 と同時に、その過程で、テスラ・コイルの背後にある、 ある現象を突き止めた。 それが、「アイ起電力」である。

#### この装置は、大きく分けて、

- 1) 強く鋭いパルス電流を、発生する部分
- 2) このパルス電流を入力して、**アイ起電力を**発生する部分の2つからなる。


この構成は、テスラ・コイルと、ほぼ同じである。

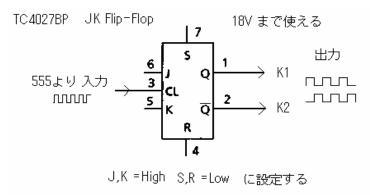
2016年の秋に、アイ起電力の存在に、気がついてから、 実に様々なコイルを試してきたが、最近になって、 ようやく、これが最良ではないか、と思えるコイルに到達した。 それは・・・、

パルスを発生する部分では、EIコイル。 アイ起電力を発生する部分では、トロイダルコイル。

これらを用いて、現在、'出力=入力の2倍' ができている。 さらに、これを実用化する構想を、§6 に書いた。 アイ起電力の物理学的説明は、§7 に書いた。 アイ起電力発生用コイルを、アイコイルと呼んでいる。

## §1 回路·基本形

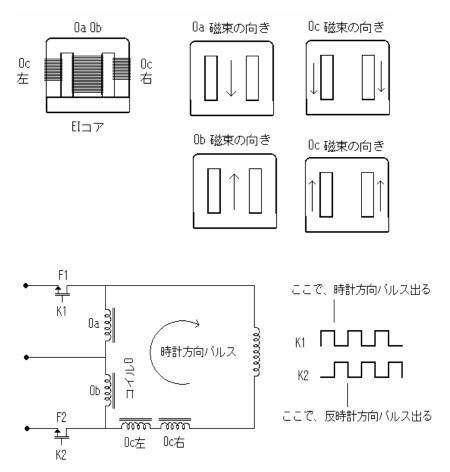



電源は、IC のボードには、AC アダプター(DC9V, 0.65A)、 コイル 0(本体)の方には、別の AC アダプター(DC6V,300mA)、 を使用している。

このように、別電源にしないと、ICが壊れてしまう。

コイル 0 から両方向(右回り、左回り)に発生した強く鋭いパルス電流は、駆動コイルに入り、それによって、共振コイルが LC 共振する。 周波数の調整は、IC555 に付けた可変抵抗器によって行う。

この装置で、最も重要なのは、強く鋭いパルス電流である。 出力の大きさは、如何にして、強く鋭いパルスを作るか、にかかっている。 テスラ・コイルでは、強く鋭いパルスを作るために、放電を用いているが、 この装置は、放電ではなく、スイッチング回路とコイルによって、 それを実現している。


## § 2 JK-フリップ・フロップ (TC4027BP)



CL へのクロック入力によって、出力 K1,K2 が、パタパタと反転する。 K1,K2 は、常に互いに、逆さになっている。 ちなみに、「Flip Flop」は、パタパタと、旗がはためく様子らしい。 何となく、シャレている。

この装置にとって、この IC は、欠かせないものであるが、 以前検索したときには、「生産中止予定」の文字が目に入った。 あまり、使われていないのかもしれない。 バイナリ・カウンタとインバータ(方形波の反転)を、 組み合わせれば、同じ機能を作り出せるが、美しくない。

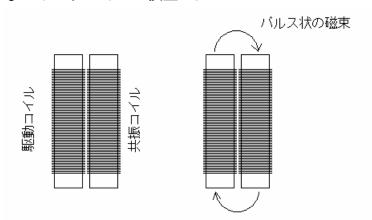
## §3 コイル 0・パルス電流発生



コイル 0 は、両方向に、強く鋭いパルス電流を、発生させるためのもので、 僕は、最初は、トロイダルコアを用いていたが、 後に、El コアの方が、強いパルスの出ることがわかって、これに代えた。

El-60 コアを 3 枚重ねにして、0a=30 回巻き、0b=30 回巻き、 0c 左,0c 右 =どちらも 40 回巻き。 0a と 0b の磁束は、互いに逆向きになるようにする。

K1,K2 が反転 → 0a,0b の磁束が反転


→ (0a または 0b) & 0c に起電力発生 → パルス発生

特に、0c の巻き方に工夫があり、 0c の左から出る磁束と、0c の右から出る磁束が、 コアの中央で、衝突するようになっている。 この衝突に、パルスを強くする効果があるようなのだ。この「磁束の衝突効果」には、他にも、気がついている人が、複数いるらしく、ネット上で、「漏れ磁束を利用した・・・」とか「反発磁束を利用した・・・」等の記事のあるのを、目にした記憶がある。どうも、特許を取得しているようだ。 僕は、それらを参考にしたわけではなくて、

色々やっているうちに、気が付いた。

その彼らに対し、少し言わせてもらうと、 この効果は、漏れ磁束や反発磁束を、特に取りだして、 利用しているわけではない。 ただ、磁束の衝突の結果がそうなるのだ。

## § 4 テスラ・コイルの模型として



§ 1の回路図で、例えば、駆動コイルと共振コイルを、 上図のようなものとし、とりあえず、コアの太さは、Φ30mm ぐらい、 とりあえず、その巻き数を、どちらも 100 回ぐらいとしておこう。

さて、駆動コイルからは、パルス状の磁束が出て、 それが、共振コイルに入り、 共振コイルには、磁束の立ち上がりで、逆起電力が、 磁束の立ち下がりで、順方向の起電力が生じる。 しかし、磁束がパルス状であるため、 この2つの起電力は、時間を置くことなく発生し、 後者が前者を、打ち消してしまう。 (これは、電磁気学を用いた推理であり、実験でもそうなる。)

その結果、共振コイルの起電力は、トータルでは小さく、 共振コイルの共振は、情けないほど、弱いものとなる。 これを見る限り、共振に対して、パルスは効果がない。

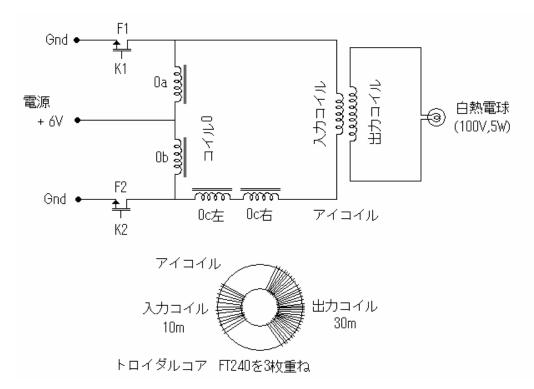
ところが、・・・である。

共振コイルの巻き数を、1000 回~1500 回ぐらいに、増やしていくと、 様相は一変する。

何を思ったか、共振は激変、異常に強くなる。

このときの共振用コンデンサは、100pF ぐらい。

これは、電磁誘導ではない、何か別の起電力が、


発生したために違いない、と僕は思い、

この突然現れた起電力を、「アイ起電力」と呼ぶことにした。

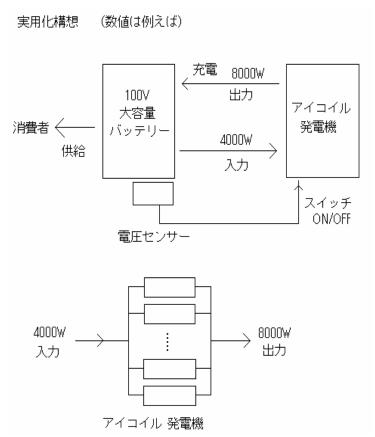
たぶん、これは、テスラ・コイルに起きている現象と、同じものだろう。

ではなぜ、パルスで起きるのかというと、 上に述べたように、パルスでは電磁誘導が抑制されて、目立たなくなり、 そのため、背後に隠れていたアイ起電力が、 表に現れやすくなる、ためだろう。

## §5 出力を見る



テスラ・コイルの模型では、駆動コイルと共振コイルの対が、 エネルギーを発生しているように思えたので、 それを、視覚化しようと考えた。 入力コイルと出力コイルは、トロイダルコア(FT240)を3枚重ね、 入力側10m(約90回巻き)、出力側30m(約270回巻き)。


#### これまで、

トロイダルコアは、アイ起電力には不向きと、ずっと思い込んでいた。 しかし、今回新たに、もう1度やってみると、 「もしかして最適か」と思えるほど、良いことがわかった。 ただ、結果が、巻き数に大きく左右され、 そのせいか、以前は勘違いしたらしい。 巻きにくいという欠点はあるが、トロイダルコイルは、 巻き数を少なくでき、コンパクトで効率がよく、よい結果が得られる。

出力を見るため、出力コイル側に直接、 昔からの白熱電球(100V,5W)をつけた。 これを光らせ、どんな様子か、見ようというわけだ。 さて、電源スイッチ ON、555 の周波数を調整して、 白熱電球が、最も明るくなるところを捜す。(2.7kHz) 結果は、かなり明るい。 この電球を、直接 100V 電源へ差し込んだ明るさに、 あと、1歩で届くというところか。 (明るいオレンジ色で、直接 100V だと白) 入力は、6V,300mA だから、多くても 1.8W。 出力は、5W 電球がかなりだから、3W~4W 弱か。 これから、2 倍ぐらいは出ていると考える。

ちなみに、アイコイルを外して、パルスを直接、この電球へ入力すると、 辺りを暗くしないと、わからないほど、暗く、かすかにしか光らない。 ここからも、アイコイルが、電力を発生していることがわかる。

## §6 超発電・実用化構想(永久バッテリー)



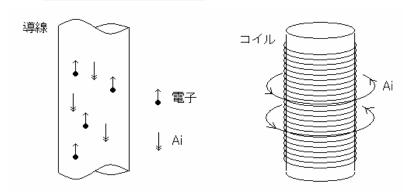
§ 5 に示した装置の規模を大きくして、上図のようなシステムとしたら、 どうだろうか。

このアイコイル発電機は、(出力=入力の2倍)とする。

大容量バッテリーには、電圧センサーが取り付けてあり、 バッテリーの電圧が下がると、発電機を ON にし、 バッテリーの電圧が上がると、発電機を OFF にする。 これを繰り返す。

消費より、発電が上回っていれば、このシステムは成立する。

大規模化は、例えば、§ 5 の装置を(100V,X アンペア)用に手直しして、 それを複数個、並列に並べるなど、・・・ すればよいと思う。


この装置を使用者側(消費者側)から見ると、いくら使っても、電気の減らない、「永久バッテリー」に見えるだろう。 一方で、この装置のためには、 短時間で急速に充電できるバッテリーが、欠かせないが、 幸い、最近では、電気自動車用に、急速充電バッテリーが、 次々と開発されている。 例えば、東芝のものでは、「5 分充電すれば 350km 走る」 など。 今後、そういうものが、どんどん出てくるだろうから、 その点は心配ない。

さて、この永久バッテリーが確立した後、これを電気自動車に用いれば、 ガソリンも充電も不要で、どこまでも走る、フリーエネルギーカーができる。 またこれを、家庭用電源に用いれば、電力会社から電気を買わなくてよい。 そんなことになれば、電力会社はこまるだろうが、 こまらないためには、電力会社が真っ先に、これに着手すればよい。

この装置の恩恵として、火力発電所が、不要になると同時に、 排気ガスを、まったく出さない車が、世界中を走る。 その結果、大気中の二酸化炭素は、次第に減り、 地球温暖化は、徐々に解消されていくだろう。

また一方で当然、原発も不要になり、
人類が、核廃棄物処理に、苦慮することもなくなるだろう。

## §7 アイ起電力のメカニズム



巻き数の多いコイルに、強く鋭いパルス状の電流を入力すると、または、強く鋭いパルス状の磁束を入力すると、電磁誘導とは別の、ある起電力が、順方向(電流と同じ方向)に生じる。 僕は、これを、電磁ポテンシャル Ai による作用と考え、「アイ起電力」と呼ぶことにした。

アイ起電力のメカニズムについては、現在、次のようなものを考えている。 量子電磁気学に、「Dirac の置換え」という手法がある。

 $p \rightarrow p-qA$ 

p:電子の運動量、 -q:電子の電荷(q>0)、 A:電磁ポテンシャル

この式から、電磁ポテンシャル A が存在する場所においては、 その向きによっては、電子の運動量は、-qA 増大する。

これを、コイルの巻き線内の、自由電子に当てはめてみると、まず、そこには、コイルの磁束によって作られた、電磁ポテンシャル A がある。 次に、幸運にも、この A は、ちょうど、自由電子の運動量を、増大させる方向になっている。 (これは、電磁気学を詳しく調べて、確かめた。) これによって、自由電子の運動量は増大し、 言い換えれば、電流は増大する。

我々は、さらなる幸運に恵まれる。 この電流の増大は、今度は逆に、A を増大させるのである。 ここに、次の奇跡的な連鎖 電流の増大 ⇔ A の増大 が生じる。 外から見ると、これがアイ起電力ということになる。 Dirac に花束を! § 8 補足(重複する部分はあるが) コイルに発生する起電力には、電磁誘導とは別に、 電磁ポテンシャル Ai に、よるものがあるらしい。 量子電磁気学に、「Dirac の置換え」(p→p-qA)

というのがあるが、

これは、アハラノフ・ボーム効果の理論的導出にも、 用いられており、単に形式的なものではなくて、 現実に起こるものだと、考えられる。 すなわち、

電磁ポテンシャル Ai 中に置かれた 電子の運動量 p は、Ai によって変化する。

これを、コイルで考えると、コイルの回りには、Ai が発生しているから、コイル中の自由電子には、運動量の変化が、起こるということになる。それが、起電力の形をとって表に現れても、不思議はないし、十分に考えられる。

テスラコイルに発生する、あの異常な高電圧も、 このアイ起電力だとすると、うまく説明できる。 さらに、アイ起電力は、コイルの電流を増大させる方向に、 なるようなのだ。

僕は、これを「アイ起電力」と呼んでいる。(アイは Ai)

僕は、これを確かめるために、実際に実験装置を作り、 実験してみた。結果は、肯定的なものだった。

この話は、当然、エネルギー保存則に抵触する。 しかし、特殊相対論を認めるならば、 我々は、もう、エネルギー保存則に固執する必要はない。 他ならぬ特殊相対論が、そう言っている。 この保存則は、次の文章で簡単に論破できる。

● 特殊相対論では、エネルギーは単独では保存されずに、 'エネルギー・運動量'の形で保存されるという。 「エネルギーは、単独では保存されない」 これは、裏を返せば、 「エネルギーは保存されない」ということである。

エネルギー保存則は、古典物理学に限定されるもので、 相対論を含む 4 次元的な物理学では、 保存されなくても、問題は起こらない。 なぜなら、4 次元的な物理学では、 エネルギーをスカラー量として、確定するのは無理で、 それに伴い、保存則も崩壊する。 スカラー量でない物理量が、保存されるというのは、 考えにくいからだ。

というより、エネルギーは物理量ですらない、 曖昧模糊とした存在となる。

2018年12月~2019年7月発行

著者:渡辺 満,発行者:渡辺 満

Copyright 渡辺 満 2019 年